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ABSTRACT
There has been significant recent interest in game theoretic ap-
proaches to security, with much of the recent research focused on
utilizing the leader-follower Stackelberg game model; for exam-
ple, these games are at the heart of major applications such as
the ARMOR program deployed for security at the LAX airport
since 2007 and the IRIS program in use by the US Federal Air
Marshals (FAMS). The foundational assumption for using Stackel-
berg games is that security forces (leaders), acting first, commit to
a randomized strategy; while their adversaries (followers) choose
their best response after surveillance of this randomized strategy.
Yet, in many situations, the followers may act without observa-
tion of the leader’s strategy, essentially converting the game into
a simultaneous-move game model. Previous work fails to address
how a leader should compute her strategy given this fundamental
uncertainty about the type of game faced.

Focusing on the complex games that are directly inspired by real-
world security applications, the paper provides four contributions
in the context of a general class of security games. First, exploit-
ing the structure of these security games, the paper shows that the
Nash equilibria in security games are interchangeable, thus alle-
viating the equilibrium selection problem. Second, resolving the
leader’s dilemma, it shows that under a natural restriction on se-
curity games, any Stackelberg strategy is also a Nash equilibrium
strategy; and furthermore, the solution is unique in a class of real-
world security games of which ARMOR is a key exemplar. Third,
when faced with a follower that can attack multiple targets, many
of these properties no longer hold. Fourth, our experimental results
emphasize positive properties of games that do not fit our restric-
tions. Our contributions have major implications for the real-world
applications.
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1. INTRODUCTION
There has been significant recent research interest in game-theoretic

approaches to security at airports, ports, transportation, shipping
and other infrastructure [12, 3, 4, 7]. Much of this work has used
a Stackelberg game framework to model interactions between the
security forces and attackers. That is, the defender (i.e., the secu-
rity forces) acts first by committing to a patrolling or inspection
strategy, and the attacker chooses where to attack after observ-
ing the defender’s choice. The typical solution concept applied to
these games is Strong Stackelberg Equilibrium (SSE), which as-
sumes that the defender will choose an optimal mixed (random-
ized) strategy based on the assumption that the attacker will observe
this strategy and choose an optimal response. This leader-follower
paradigm appears to fit many real-world security situations. Indeed,
Stackelberg games are at the heart two major decision-support ap-
plications: the ARMOR program in use at the Los Angeles Inter-
national Airport since 2007 to randomize allocation of checkpoints
and canine patrols [12], and the IRIS program in use by the US
Federal Air Marshals to randomize assignments of air marshals to
flights [13].

However, there are legitimate concerns about whether the Stack-
elberg model is appropriate in all cases. In some situations attack-
ers may choose to act without acquiring costly information about
the security strategy, especially if security measures are difficult to
observe (e.g., undercover officers) and insiders are unavailable. In
such cases, a simultaneous-move game model may be a better re-
flection of the real situation. The defender faces an unclear choice
about which strategy to adopt: the recommendation of the Stack-
elberg model, or of the simultaneous-move model, or something
else entirely? In general settings, the equilibrium strategy can in
fact differ between these models. Consider the following game in
normal form:

c d

a 2,1 4,0

b 1,0 3,1

Table 1: Example game where the Stackelberg Equilibrium is
not a Nash Equilibrium

If the row player has the ability to commit, the SSE strategy is to
play a with .5 and b with .5, so that the best response for the column
player is to play d, which gives the row player an expected utility
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of 3.52. On the other hand, if the players move simultaneously the
only Nash Equilibrium (NE) of this game is for the row player to
play a and the column player c. This can be seen by noticing that
b is strictly dominated for the row player. Previous work has failed
to resolve the defender’s dilemma of which strategy to select when
the attacker’s observation capability is unclear.

We conduct theoretical and experimental analysis of the leader’s
dilemma, focusing on security games [7]. These are non-zero-sum
games motivated by real-world security domains, and are at the
heart of applications such as ARMOR and IRIS [7, 12, 13]. We
make four primary contributions. First, we show that Nash equi-
libria are interchangeable in security games, avoiding equilibrium
selection problems. Second, if the game satisfies the SSAS (Subsets
of Schedules Are Schedules) property, the defender’s set of SSE
strategies is a subset of her NE strategies. In this case, the de-
fender is always playing a best response by using an SSE regard-
less of whether the attacker observes the defender’s strategy or not.
Third, we provide counter-examples to this (partial) equivalence in
two cases: (1) when the SSAS property does not hold for defender
schedules, and (2) when the attacker can attack multiple targets si-
multaneously. In these cases, the defender’s SSE strategy may not
be part of any NE profile. Finally, our experimental tests show that
the fraction of games where the SSE strategy played is not part
of any NE profile is vanishingly small. However, when attackers
can attack multiple targets a relatively large number of games have
distinct SSE and NE strategies.

2. MOTIVATING DOMAINS
We study quite general classes of security games in this work, but

with assumptions motivated by two real-world applications. The
first is the ARMOR security system deployed at the Los Angeles
International Airport (LAX) [12]. In this domain police are able
to set up checkpoints on roads leading to particular terminals, and
assign canine units (bomb-sniffing dogs) to patrol terminals. Po-
lice resources in this domain are homogeneous, and do not have
significant scheduling constraints.

IRIS is a similar application deployed by the Federal Air Mar-
shals Service (FAMS) [13]. Armed marshals are assigned to com-
mercial flights to deter and defeat terrorist attacks. This domain
has more complex constraints. In particular, marshals are assigned
to tours of flights that return to the same destination, and the tours
on which any given marshal is available to fly are limited by the
marshal’s current location and timing constraints. The types of
scheduling and resource constraints we consider in this work are
motivated by those necessary to represent this domain.

Additionally, there are many other potential security applica-
tions, e.g., the Los Angeles Port domain, where port police patrol
docks to ensure the safety and security of all passenger, cargo, and
vessel operations.

3. DEFINITIONS AND NOTATION
A security game [7] is a two-player game between a defender and

an attacker. The attacker may choose to attack any target from the
set T = {t1, t2, . . . , tn}. The defender tries to prevent attacks by
covering targets using resources from the set R = {r1, r2, . . . , rK}.
As shown in Figure 1, Uc

d(ti) is the defender’s utility if ti is at-
tacked while ti is covered by some defender resource. If ti is not
covered, the defender gets Uu

d (ti). The attacker’s utility is denoted
similarly by Uc

a(ti) and Uu
a (ti). We use ΔUd(ti) = Uc

d(ti) −
2In these games it is assumed that if the follower is indifferent, he
breaks the tie in the leader’s favor (otherwise, the optimal solution
is not well defined).

Uu
d (ti) to denote the difference between defender’s covered and

uncovered utilities. Similarly, ΔUa(ti) = Uu
a (ti) − Uc

a(ti). As
a key property of security games, we assume ΔUd(ti) > 0 and
ΔUa(ti) > 0. In words, adding resources to cover a target helps
the defender and hurts the attacker.

Defender Attacker

Ud
u(ti)

Ud
c(ti)

Ua
u(ti)

Ua
c(ti)

Not covered Covered

ΔUa(ti) > 0

ΔUd(ti) > 0

Figure 1: Payoff structure of security games.

Motivated by FAMS and similar real-world domains, we intro-
duce resource and scheduling constraints for the defender. Re-
sources may be assigned to schedules covering multiple targets,
s ⊆ T . For each resource ri, there is a subset Si of the schedules
S that resource ri can potentially cover. That is, ri can cover any
s ∈ Si. In the FAMS domain, flights are targets and air marshals
are resources. Schedules capture the idea that air marshals fly tours,
and must return to a particular starting point. Heterogeneous re-
sources can express additional timing and location constraints that
limit the tours on which any particular marshal can be assigned to
fly. An important subset of the FAMS domain can be modeled us-
ing fixed schedules of size 2 (i.e., a pair of departing and returning
flights). The LAX domain is also a subclass of security games as
defined here, with schedules of size 1 and homogeneous resources.

A security game described above can be represented as a normal
form game, as follows. The attacker’s pure strategy space A is the
set of targets. The attacker’s mixed strategy a = 〈ai〉 is a vector
where ai represents the probability of attacking ti. The defender’s
pure strategy is a feasible assignment of resources to schedules,
i.e., 〈si〉 ∈ ∏K

i=1 Si. Since covering a target with one resource
is essentially the same as covering it with any positive number of
resources, the defender’s pure strategy can also be represented by a
coverage vector d = 〈di〉 ∈ {0, 1}n where di represents whether
ti is covered or not. For example, 〈{t1, t4}, {t2}〉 can be a possible
assignment, and the corresponding coverage vector is 〈1, 1, 0, 1〉.
However, not all the coverage vectors are feasible due to resource
and schedule constraints. We denote the set of feasible coverage
vectors by D ⊆ {0, 1}n.

The defender’s mixed strategy C specifies the probabilities of
playing each d ∈ D, where each individual probability is de-
noted by Cd. Let c = 〈ci〉 be the vector of coverage probabili-
ties corresponding to C, where ci =

∑
d∈D diCd is the marginal

probability of covering ti. For example, suppose the defender has
two coverage vectors: d1 = 〈1, 1, 0〉 and d2 = 〈0, 1, 1〉. Then
C = 〈.5, .5〉 is one defender’s mixed strategy, and the correspond-
ing c = 〈.5, 1, .5〉. Denote the mapping from C to c by ϕ, so that
c = ϕ(C).

If strategy profile 〈C,a〉 is played, the defender’s utility is

Ud(C,a) =

n∑
i

ai (ciU
c
d(ti) + (1− ci)U

u
d (ti)) ,

while the attacker’s utility is

Ua(C,a) =

n∑
i

ai (ciU
c
a(ti) + (1− ci)U

u
a (ti)) .
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If the players move simultaneously, the standard solution con-
cept is Nash equilibrium.

DEFINITION 1. A pair of strategies 〈C,a〉 forms a Nash Equi-
librium (NE) if they satisfy the following:

1. The defender plays a best-response:
Ud(C,a) ≥ Ud(C

′,a) ∀C′.

2. The attacker plays a best-response:
Ua(C,a) ≥ Ua(C,a′) ∀ a′.

In our Stackelberg model, the defender chooses a mixed strategy
first, and the attacker chooses a strategy after observing the de-
fender’s choice. The attacker’s response function is g(C) : C →
a. In this case, the standard solution concept is Strong Stackelberg
Equilibrium [8, 16].

DEFINITION 2. A pair of strategies 〈C, g〉 forms a Strong Stack-
elberg Equilibrium (SSE) if they satisfy the following:

1. The leader (defender) plays a best-response:
Ud(C, g(C)) ≥ Ud(C

′, g(C′)), for all C′.

2. The follower (attacker) plays a best-response:
Ua(C, g(C)) ≥ Ua(C, g′(C)), for all C, g′.

3. The follower breaks ties optimally for the leader:
Ud(C, g(C)) ≥ Ud(C, τ(C)), for all C, where τ(C) is the
set of follower best-responses to C.

We denote the set of mixed strategies for the defender that are
played in some Nash Equilibrium by ΩNE , and the corresponding
set for Strong Stackelberg Equilibrium by ΩSSE .

4. EQUILIBRIA IN SECURITY GAMES
The challenge for us is to understand the fundamental relation-

ships between the SSE and NE strategies in security games. A spe-
cial case is zero-sum security games, where the defender’s utility
is the exact opposite of the attacker’s utility. For finite two-person
zero-sum games, it is known that the different game theoretic so-
lution concepts of NE, minimax, maximin and SSE all give the
same answer. In addition, Nash equilibrium strategies of zero-sum
games have a very useful property in that they are interchangeable:
an equilibrium strategy for one player can be paired with the other
player’s strategy from any equilibrium profile, and the result is an
equilibrium, and the payoffs for both players remain the same.

Unfortunately, security games are not necessarily zero-sum (and
are not zero-sum in deployed applications). Many properties of
zero-sum games do not hold in security games. For instance, a
minimax strategy in a security game may not be a maximin strat-
egy. Consider the example in Table 2, in which there are 3 targets
and one defender resource. The defender has three actions; each of
defender’s actions can only cover one target at a time, leaving the
other targets uncovered. While all three targets are equally appeal-
ing to the attacker, the defender has varying utilities of capturing
the attacker at different targets. For the defender, the unique min-
imax strategy, 〈1/3, 1/3, 1/3〉, is different from the unique max-
imin strategy, 〈6/11, 3/11, 2/11〉.

Strategically zero-sum games [10] are a natural and strict su-
perset of zero-sum games for which most of the desirable prop-
erties of zero-sum games still hold. This is exactly the class of
games for which no completely mixed Nash equilibrium can be
improved upon. Moulin and Vial proved a game (A,B) is strategi-
cally zero-sum if and only if there exist u > 0 and v > 0 such that

t1 t2 t3
C U C U C U

Def 1 0 2 0 3 0
Att 0 1 0 1 0 1

Table 2: Security game which is not strategically zero-sum

uA + vB = U + V , where U is a matrix with identical columns
and V is a matrix with identical rows [10]. Unfortunately, security
games are not even strategically zero-sum. The game in Table 2 is a
counterexample, because otherwise there must exist u, v > 0 such
that,

u

⎛
⎝ 1 0 0

0 2 0
0 0 3

⎞
⎠+ v

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠

=

⎛
⎝ a a a

b b b
c c c

⎞
⎠+

⎛
⎝ x y z

x y z
x y z

⎞
⎠

From these equations, a + y = a + z = b + x = b + z =
c + x = c + y = v, which implies x = y = z and a = b = c.
We also know a + x = u, b + y = 2u, c + z = 3u. However
since a + x = b + y = c + z, u must be 0, which contradicts the
assumption u > 0.

Nevertheless, we show in the rest of this section that security
games still have some important properties. We start by establish-
ing equivalence between the set of defender’s minimax strategies
and the set of defender’s NE strategies. Second, we show Nash
equilibria in security games are interchangeable, resolving the de-
fender’s equilibrium strategy selection problem in simultaneous-
move games. Third, we show that under a natural restriction on
schedules, any SSE strategy for the defender is also a minimax
strategy and hence an NE strategy. This resolves the defender’s
dilemma about whether to play according to SSE or NE when there
is uncertainty about attacker’s ability to observe the strategy. Fi-
nally, for a restricted class of games (including the games from
the LAX domain), we find that there is a unique SSE/NE defender
strategy and a unique attacker NE strategy.

4.1 Equivalence of NE and Minimax
We first prove that any defender’s NE strategy is also a minimax

strategy. Then for every defender’s minimax strategy C we con-
struct a strategy a for the attacker such that 〈C,a〉 is an NE profile.

DEFINITION 3. For a defender’s mixed strategy C, define the
attacker’s best response utility by E(C) = maxn

i=1 Ua(C, ti).
Denote the minimum of the attacker’s best response utilities over
all defender’s strategies by E∗ = minC E(C). The set of de-
fender’s minimax strategies is defined as:

ΩM = {C|E(C) = E∗}.
We define the function f as follows. If a is an attacker’s strategy

in which target ti is attacked with probability ai, then f(a) = ā is
an attacker’s strategy such that

āi = λai
ΔUd(ti)

ΔUa(ti)

where λ > 0 is a normalizing constant such that
∑n

i āi = 1. The
inverse function f−1(ā) = a is given by the following equation.

ai =
1

λ
āi

ΔUa(ti)

ΔUd(ti)
(1)
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LEMMA 4.1. Consider a security game G. Construct the corre-
sponding zero-sum security game Ḡ in which the defender’s utilities
are re-defined as follows.

Uc
d(t) = −Uc

a(t)

Uu
d (t) = −Uu

a (t)

Then 〈C,a〉 is an NE profile in G if and only if 〈C, f(a)〉 is an NE
profile in Ḡ.

PROOF. Note that the supports of strategies a and ā are the
same, and also that the attacker’s utility function is the same in
games G and Ḡ. Thus a is a best response to C in G if and only if
ā is a best response to C in Ḡ.

Denote the utility that the defender gets if profile 〈C,a〉 is played
in game G by UG

d (C,a). To show that C is a best response to a in
game G if and only if C is a best response to ā in Ḡ, it is sufficient
to show equivalence of the following two inequalities.

UG
d (C,a)− UG

d (C
′,a) ≥ 0

⇔ U Ḡ
d (C, ā)− U Ḡ

d (C
′, ā) ≥ 0

We will prove the equivalence by starting from the first inequality
and transforming it into the second one. On the one hand, we have,

UG
d (C,a)− UG

d (C
′,a) =

n∑
i

ai(ci − c′i)ΔUd(ti).

Similarly, on the other hand, we have,

U Ḡ
d (C, ā)− U Ḡ

d (C
′, ā) =

n∑
i

āi(ci − c′i)ΔUa(ti).

Given Equation (1) and λ > 0, we have,

UG
d (C,a)− UG

d (C
′,a) ≥ 0

⇔
n∑
i

ai(ci − c′i)ΔUd(ti) ≥ 0

⇔
n∑
i

1

λ
āi

ΔUa(ti)

ΔUd(ti)
(ci − c′i)ΔUd(ti) ≥ 0

⇔ 1

λ

n∑
i

āi(ci − c′i)ΔUa(ti) ≥ 0

⇔ 1

λ

(
U Ḡ

d (C, ā)− U Ḡ
d (C

′, ā)
)
≥ 0

⇔ U Ḡ
d (C, ā)− U Ḡ

d (C
′, ā) ≥ 0

LEMMA 4.2. Suppose C is a defender NE strategy in a security
game. Then E(C) = E∗, i.e., ΩNE ⊆ ΩM .

PROOF. Suppose 〈C,a〉 is an NE profile in the security game
G. According to Lemma 4.1, 〈C, f(a)〉 must be an NE profile
in the corresponding zero-sum security game Ḡ. Since C is an NE
strategy in a zero-sum game, it must also be a minimax strategy [5].
Thus E(C) = E∗.

LEMMA 4.3. In a security game G, any defender’s strategy C
such that E(C) = E∗ is an NE strategy, i.e., ΩM ⊆ ΩNE .

PROOF. C is a minimax strategy in both G and the correspond-
ing zero-sum game Ḡ. Any minimax strategy is also an NE strategy
in a zero-sum game [5]. Then there must exist an NE profile 〈C, ā〉
in Ḡ. By Lemma 4.1, 〈C, f−1(ā)〉 is an NE profile in G. Thus C
is an NE strategy in G.

THEOREM 4.4. In a security game, the set of defender’s mini-
max strategies is equal to the set of defender’s NE strategies, i.e.,
ΩM = ΩNE .

PROOF. Lemma 4.2 shows that every defender’s NE strategy is
a minimax strategy, and Lemma 4.3 shows that every defender’s
minimax strategy is an NE strategy. Thus the sets of defender’s NE
and minimax strategies must be equal.

4.2 Interchangeability of Nash Equilibria
We now show that Nash Equilibria in security games are inter-

changeable.

THEOREM 4.5. Suppose 〈C,a〉 and 〈C′,a′〉 are two NE pro-
files in a security game G. Then 〈C,a′〉 and 〈C′,a〉 are also NE
profiles in G.

PROOF. Consider the corresponding zero-sum game Ḡ. From
Lemma 4.1, both 〈C, f(a)〉 and 〈C′, f(a′)〉 must be NE profiles
in Ḡ. By the interchange property of NE in zero-sum games [5],
〈C, f(a′)〉 and 〈C′, f(a)〉 must also be NE profiles in Ḡ. Applying
Lemma 4.1 again in the other direction, we get that 〈C,a′〉 and
〈C′,a〉 must be NE profiles in G.

By Theorem 4.5, the defender’s equilibrium selection problem in
a simultaneous-move security game is resolved. The reason is that
given the attacker’s NE strategy a, the defender must get the same
utility by responding with any NE strategy. Next, we give some
insights on expected utilities in NE profiles. We first show the at-
tacker’s expected utility is the same in all NE profiles, followed
by an example demonstrating that the defender may have varying
expected utilities corresponding to different attacker’s strategies.

THEOREM 4.6. Suppose 〈C,a〉 is an NE profile in a security
game. Then, Ua(C,a) = E∗.

PROOF. From Lemma 4.2, C is a minimax strategy and E(C) =
E∗. On the one hand,

Ua(C,a) =

n∑
i

aiUa(C, ti) ≤
n∑
i

aiE(C) = E∗.

On the other hand, because a is a best response to C, it should be at
least as good as the strategy of attacking t∗ ∈ argmaxt Ua(C, t)
with probability 1, that is,

Ua(C,a) ≥ Ua(C, t∗) = E(C) = E∗.

Therefore we know Ua(C,a) = E∗.

Unlike the attacker who gets the same utility in all NE profiles,
the defender may get varying expected utilities depending on the
attacker’s strategy selection. Consider the game shown in Table 3.
The defender can choose to cover one of the two targets at a time.
The only defender’s NE strategy is to cover t1 with 100% proba-
bility, making the attacker indifferent between attacking t1 and t2.
One attacker’s NE response is always attacking t1, which gives the
defender an expected utility of 1. Another attacker’s NE strategy
is 〈2/3, 1/3〉, given which the defender is indifferent between de-
fending t1 and t2. In this case, the defender’s utility decreases to
2/3 because she captures the attacker with a lower probability.

4.3 SSE and Minimax / NE
We have already shown that the set of defender’s NE strategies

coincides with her minimax strategies. If every defender’s SSE
strategy is also a minimax strategy, then SSE strategies must also
be NE strategies. The defender can then safely commit to an SSE
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t1 t2
C U C U

Def 1 0 2 0
Att 1 2 0 1

Table 3: A security game where the defender’s expected utility
varies in different NE profiles

strategy; there is no selection problem for the defender. Unfortu-
nately, if a security game has arbitrary scheduling constraints, then
an SSE strategy may not be part of any NE profile. For example,
consider the game in Table 4 with 4 targets {t1, . . . , t4}, 2 sched-
ules s1 = {t1, t2}, s2 = {t3, t4}, and a single defender resource.
The defender always prefers that t1 is attacked, and t3 and t4 are
never appealing to the attacker.

t1 t2 t3 t4
C U C U C U C U

Def 10 9 -2 -3 1 0 1 0
Att 2 5 3 4 0 1 0 1

Table 4: A schedule-constrained security game where the de-
fender’s SSE strategy is not an NE strategy.

There is a unique SSE strategy for the defender, which places
as much coverage probability on s1 as possible without making t2
more appealing to the attacker than t1. The rest of the coverage
probability is placed on s2. The result is that s1 and s2 are both
covered with probability 0.5. In contrast, in a simultaneous-move
game, t3 and t4 are dominated for the attacker. Thus, there is no
reason for the defender to place resources on targets that are never
attacked, so the defender’s unique NE strategy covers s1 with prob-
ability 1. That is, the defender’s SSE strategy is different from the
NE strategy. The difference between the defender’s payoffs in these
cases can also be arbitrarily large because t1 is always attacked in
an SSE and t2 is always attacked in a NE.

The above example restricts the defender to protect t1 and t2
together, which makes it impossible for the defender to put more
coverage on t2 without making t1 less appealing. If the defender
could assign resources to any subset of a schedule, this difficulty is
resolved. More formally, we assume that for any resource ri, any
subset of a schedule in Si is also a possible schedule in Si:

∀1 ≤ i ≤ K : s′ ⊆ s ∈ Si ⇒ s′ ∈ Si. (2)

If a security game satisfies Equation (2), we say it has the SSAS
property. This is natural in many security domains, since it is often
possible to cover fewer targets than the maximum number that a
resource could possible cover in a schedule. We find that this prop-
erty is sufficient to ensure that the defender’s SSE strategy must
also be an NE strategy.

LEMMA 4.7. Suppose C is a defender strategy in a security
game which satisfies the SSAS property and c = ϕ(C) is the cor-
responding vector of marginal probabilities. Then for any c′ such
that 0 ≤ c′i ≤ ci for all ti ∈ T , there must exist a defender strategy
C′ such that ϕ(C′) = c′.

PROOF. The proof is by induction on the number of ti where
c′i �= ci, as denoted by δ(c, c′). As the base case, if there is no i
such that c′i �= ci, the existence trivially holds because ϕ(C) = c′.
Suppose the existence holds for all c, c′ such that δ(c, c′) = k,
where 0 ≤ k ≤ n − 1. We consider any c, c′ where δ(c, c′) =

k + 1. Then for some j, c′j �= cj . Since c′j ≥ 0 and c′j < cj , we
have cj > 0. There must be a nonempty set of coverage vectors
Dj that cover tj and receive positive probability in C. Because the
security game satisfies the SSAS property, for every d ∈ Dj , there
is a valid d− which covers all targets in d except for tj . From

the defender strategy C, by shifting
Cd(cj−c′j)

cj
probability from

every d ∈ Dj to the corresponding d−, we get a defender strategy

C† where c†i = ci for i �= j, and c†i = c′i for i = j. Hence
δ(c†, c′) = k, implying there exists a C′ such that ϕ(C′) = c′

by the induction assumption. By induction, the existence holds for
any c, c′.

THEOREM 4.8. Suppose C is a defender SSE strategy in a se-
curity game which satisfies the SSAS property. Then E(C) = E∗,
i.e., ΩSSE ⊆ ΩM = ΩNE .

PROOF. The proof is by contradiction. Suppose 〈C, g〉 is an
SSE profile in a security game which satisfies the SSAS property,
and E(C) > E∗. Let Ta = {ti|Ua(C, ti) = E(C)} be the
set of targets that give the attacker the maximum utility given the
defender strategy C. By the definition of SSE, we have

Ud(C, g(C)) = max
ti∈Ta

Ud(C, ti).

Consider a defender mixed strategy C∗ such that E(C∗) = E∗.
Then for any ti ∈ Ta, Ua(C

∗, ti) ≤ E∗. Consider a vector c′:

c′i =

⎧⎨
⎩

c∗i − E∗ − Ua(C
∗, ti) + ε

Uu
a (ti)− Uc

a(ti)
, ti ∈ Ta, (3a)

c∗i , ti /∈ Ta, (3b)

where ε is an infinitesimal positive number. Since E∗−Ua(C
∗, ti)+

ε > 0, we have c′i < c∗i for all ti ∈ Ta. On the other hand, since
for all ti ∈ Ta,

Ua(c
′, ti) = E∗ + ε < E(C) = Ua(C, ti),

we have c′i > ci ≥ 0. Then for any ti ∈ T , we have 0 ≤ c′i ≤ c∗i .
From Lemma 4.7, there exists a defender strategy C′ correspond-
ing to c′. The attacker’s utility of attacking each target is as follows:

Ua(C
′, ti) =

{
E∗ + ε, ti ∈ Ta, (4a)

Ua(C
∗, ti) ≤ E∗, ti /∈ Ta. (4b)

Thus, the attacker’s best responses to C′ are still Ta. For all ti ∈
Ta, since c′i > ci, it must be the case that Ud(C, ti) < Ud(C

′, ti).
By definition of attacker’s SSE response g, we have,

Ud(C
′, g(C′)) = max

ti∈Ta

Ud(C
′, ti)

> max
ti∈Ta

Ud(C, ti) = Ud(C, g(C)).

It follows that the defender is better off using C′, which contradicts
the assumption C is an SSE strategy of the defender.

Theorem 4.4 and 4.8 together imply the following corollary.

COROLLARY 4.9. In security games with the SSAS property,
any defender’s SSE strategy is also an NE strategy.

We can now answer the original question posed in this paper:
when there is uncertainty over the type of game played, should the
defender choose an SSE strategy or a mixed strategy Nash equi-
librium or some combination of the two? For domains that satisfy
the SSAS property, we have proven that any of the defender’s SSE
strategies is also an NE strategy.
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Among our motivating domains, the LAX domain satisfies the
SSAS property since all schedules are of size 1. Other patrolling
domains, such as patrolling a port, also satisfy the SSAS property.
In such domains, the defender could thus commit to an SSE strat-
egy, which is also now known to be an NE strategy. The defender
retains the ability to commit, but is still playing a best-response to
an attacker in a simultaneous-move setting (assuming the attacker
plays an equilibrium strategy – it does not matter which one, due
to the interchange property shown above). However, the FAMS do-
main does not naturally satisfy the SSAS property because marshals
must fly complete tours (though in principle they could fly as civil-
ians on some legs of a tour). The question of selecting SSE vs. NE
strategies in this case is addressed experimentally in Section 6.

4.4 Uniqueness in Restricted Games
The previous sections show that SSE strategies are NE strategies

in many cases. However, there may still be multiple equilibria to
select from (though this difficulty is alleviated by the interchange
property). Here we prove an even stronger uniqueness result for an
important restricted class of security domains, which includes the
LAX domain. In particular, we consider security games where the
defender has homogeneous resources that can cover any single tar-
get. The SSAS property is trivially satisfied, since all schedules are
of size 1. Any vector of coverage probabilities c = 〈ci〉 such that∑n

i ci ≤ K is a feasible strategy for the defender, so we can repre-
sent the defender strategy by marginal coverage probabilities. With
a minor restriction on the attacker’s payoff matrix, the defender al-
ways has a unique minimax strategy which is also the unique SSE
and NE strategy. Furthermore, the attacker also has a unique NE
response to this strategy.

THEOREM 4.10. In a security game with homogeneous resources
that can cover any single target, if for every target ti ∈ T , Uc

a(ti) �=
E∗, then the defender has a unique minimax, NE, and SSE strategy.

PROOF. We first show the defender has a unique minimax strat-
egy. Let T ∗ = {t|Uu

a (t) ≥ E∗}. Define c∗ = 〈c∗i 〉 as

c∗i =

⎧⎨
⎩

Uu
a (ti)− E∗

Uu
a (ti)− Uc

a(ti)
, ti ∈ T ∗, (5a)

0, ti /∈ T ∗. (5b)

Note that E∗ cannot be less than any Uc
a(ti) – otherwise, regard-

less of the defender’s strategy, the attacker could always get at least
Uc

a(ti) > E∗ by attacking ti, which contradicts the fact that E∗ is
the attacker’s best response utility to a defender’s minimax strategy.
Since E∗ ≥ Uc

a(ti) and we assume E∗ �= Uc
a(ti),

1− c∗i =
E∗ − Uc

a(ti)

Uu
a (ti)− Uc

a(ti)
> 0 ⇒ c∗i < 1.

Next, we will prove
∑n

i c∗i ≥ K. For the sake of contradiction,
suppose

∑n
i c∗i < K. Let c′ = 〈c′i〉, where c′i = c∗i + ε. Since

c∗i < 1 and
∑n

i c∗i < K, we can find ε > 0 such that c′i < 1 and∑n
i c′i < K. Then every target has strictly higher coverage in c′

than in c∗, hence E(c′) < E(c∗) = E∗, which contradicts the
fact that E∗ is the minimum of all E(c).

Next, we show that if c is a minimax strategy, then c = c∗.
By the definition of a minimax strategy, E(c) = E∗. Hence,
Ua(c, ti) ≤ E∗ ⇒ ci ≥ c∗i . On the one hand

∑n
i ci ≤ K

and on the other hand
∑n

i ci ≥ ∑n
i c∗i ≥ K. Therefore it must be

the case that ci = c∗i for any i. Hence, c∗ is the unique minimax
strategy of the defender.

Furthermore, by Theorem 4.4, we have that c∗ is the unique de-
fender’s NE strategy. By Theorem 4.8 and the existence of SSE [2],
we have that c∗ is the unique defender’s SSE strategy.

THEOREM 4.11. In a security game with homogeneous resources
that can cover any one target, if for every target ti ∈ T , Uc

a(ti) �=
E∗ and Uu

a (ti) �= E∗, then the attacker has a unique NE strategy.

PROOF. c∗ and T ∗ are the same as in the proof of Theorem 4.10.
Given the defender’s unique NE strategy c∗, in any attacker’s best
response, only ti ∈ T ∗ can be attacked with positive probability,
because,

Ua(c
∗, ti) =

{
E∗ ti ∈ T ∗ (6a)

Uu
a (ti) < E∗ ti /∈ T ∗ (6b)

Suppose 〈c∗,a〉 forms an NE profile. We have∑
ti∈T∗

ai = 1 (7)

For any ti ∈ T ∗, we know from the proof of Theorem 4.10 that
c∗i < 1. In addition, because Uu

a (t) �= E∗, we have c∗i �= 0.
Thus we have 0 < c∗i < 1 for any ti ∈ T ∗. For any ti, tj ∈
T ∗, necessarily aiΔUd(ti) = ajΔUd(tj). Otherwise, assume
aiΔUd(ti) > ajΔUd(tj). Consider another defender’s strategy
c′ where c′i = c∗i + ε < 1, c′j = c∗j − ε > 0, and c′k = c∗k for any
k �= i, j.

Ud(c
′,a)− Ud(c

∗,a) = aiεΔUd(ti)− ajεΔUd(tj) > 0

Hence, c∗ is not a best response to a, which contradicts the assump-
tion that 〈c∗,a〉 is an NE profile. Therefore, there exists β > 0
such that, for any ti ∈ T ∗, aiΔUd(ti) = β. Substituting ai with
β/ΔUd(ti) in Equation (7), we have

β =
1∑

ti∈T∗

1

ΔUd(ti)

Then we can explicitly write down a as

ai =

⎧⎨
⎩

β

ΔUd(ti)
, ti ∈ T ∗, (8a)

0, ti /∈ T ∗. (8b)

As we can see, a defined by (8a) and (8b) is the unique attacker
NE strategy.

The implication of Theorem 4.10 and Theorem 4.11 is that in the
simultaneous-move game, both the defender and the attacker have
a unique NE strategy, which gives each player a unique expected
utility as a result.

5. MULTIPLE ATTACKER RESOURCES
To this point we have assumed that the attacker will attack ex-

actly one target. We now extend our security game definition to
allow the attacker to use multiple resources to attack multiple tar-
gets simultaneously. To keep the model simple, we assume homo-
geneous resources (for both players) and schedules of size 1. The
defender has K < n resources which can be assigned to protect
any target, and the attacker has L < n resources which can be
used to attack any target. Attacking the same target with multiple
resources is equivalent to attacking with a single resource. The de-
fender’s pure strategy is a coverage vector d = 〈di〉 ∈ D, where
di ∈ {0, 1} represents whether ti is covered or not. Similarly, the
attacker’s pure strategy is an attack vector q = 〈qi〉 ∈ Q. We have∑n

i di = K and
∑n

i qi = L. If pure strategies 〈d,q〉 are played,
the attacker gets a utility of

Ua(d,q) =

n∑
i

qi (diU
c
a(ti) + (1− di)U

u
a (ti))
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while the defender’s utility is given by

Ud(d,q) =

n∑
i

qi (diU
c
d(ti) + (1− di)U

u
d (ti))

The defender’s mixed strategy is a vector C which specifies the
probability of playing each d ∈ D. Similarly, the attacker’s mixed
strategy A is a vector of probabilities corresponding to all q ∈ Q.

In security games with multiple attacker resources, the defender’s
SSE strategy may not be part of any NE profile, even if there are no
scheduling constraints. Consider the game shown in Table 5.

t1 t2 t3
C U C U C U

Def 0 −1 −100 −100− ε 0 0− ε
Att 100− ε 100 0 10 5− ε 5

Table 5: A security game with multiple attacker resources
where the defender’s SSE strategy is not an NE strategy.

There are 3 targets t1, t2, t3. The defender has 1 resource, and
the attacker has 2 resources. Therefore the defender’s pure strat-
egy space is the set of targets to protect: {t1, t2, t3}, while the
attacker’s pure strategy space consists of the pairs of targets:
{〈t1, t2〉, 〈t1, t3〉, 〈t2, t3〉}. If the defender protects t1 and the at-
tacker attacks 〈t1, t2〉, the defender’s utility is Uc

d(t1) +Uu
d (t2) =

−100− ε and the attacker’s utility is Uc
a(t1) +Uu

a (t2) = 110− ε.
In this example, t1 is very appealing to the attacker no matter if it
is covered or not, so t1 is always attacked. If t2 is attacked, the de-
fender gets a very low utility, even if t2 is defended. So in the SSE,
the defender wants to make sure that t2 is not attacked. The de-
fender’s SSE strategy places at least .5 probability on t2, so that t1
and t3 are attacked instead of t2 (recall that the attacker breaks ties
in the defender’s favor in an SSE). The attacker’s SSE response is
A = 〈0, 1, 0〉, i.e., to always attack t1 and t3. The other .5 defense
probability will be placed on t1 because ΔUd(t1) > ΔUd(t3). So,
the SSE profile is 〈C,A〉, where C = 〈.5, .5, 0〉.

Next, we show that there is no NE in which the defender plays
C. Suppose there is an NE profile 〈C,A′〉. Given C, the at-
tacker’s utility for attacking t1 is higher than the utility for attack-
ing t2, so it must be that t1 is always attacked in this NE. There-
fore, the attacker never plays 〈t2, t3〉. However, this implies that
t1 is the most appealing target for the defender to cover, because
Ud(t1,A) > Ud(ti,A), i ∈ {2, 3}. So, to be a best response the
coverage of t1 would need to be 1 instead of 0.5, contradicting the
assumption that C is an equilibrium strategy for the defender.

6. EXPERIMENTAL RESULTS
While our theoretical results resolve the leader’s dilemma for

many interesting classes of security games, as we have seen, there
are still some cases where SSE strategies are distinct from NE
strategies for the defender. One case is when security games do
not satisfy the SSAS property, and another is when the attacker has
multiple resources. We conduct experiments to further investigate
these two cases, offering evidence about the frequency with which
SSE strategies differ from all NE strategies across randomly gener-
ated games using 36 different parameter settings.

For a particular game instance we first compute an SSE strategy
C using the DOBSS mixed-integer linear program [12]. We then
use the linear feasibility program below to determine whether or
not this SSE strategy is part of some NE profile by attempting to

find an appropriate attacker response strategy.

Aq ∈ [0, 1], for all q ∈ Q (9)∑
q∈Q

Aq = 1 (10)

Aq = 0, for all Ua(q,C) < E(C) (11)∑
q∈Q

AqUd(d,q) ≤ Z, for all d ∈ D (12)

∑
q∈Q

AqUd(d,q) = Z, for all d ∈ D with Cd > 0 (13)

Here Q is the set of attacker pure strategies, which is just the set
of targets when there is only 1 attacker resource. The probability
that the attacker plays q is denoted by Aq which must be between
0 and 1 (Constraint (9)). Constraint (10) forces the probabilities
to sum to 1. Constraint (11) prevents the attacker from placing
positive probabilities on pure strategies which give the attacker a
utility less than the best response utility E(C). In constraints (12)
and (13), Z is a variable which represents the maximum expected
utility the defender can get among all pure strategies given the at-
tacker’s strategy A, and Cd denotes the probability of playing d in
C. These two constraints require the defender’s strategy C to be a
best response to the attacker’s mixed strategy. Therefore a feasible
solution A is an NE strategy for the attacker. Conversely, if 〈C,A〉
is an NE profile, A must satisfy all of the LP constraints.

We first test single-attacker games, fixing the number of targets at
10 and the number of defender resources at 3. We vary the number
of schedules, the size of the schedules, and the number of resource
types. Each test set consists of 10000 games, with payoffs drawn
from U [−100, 0] for Uu

d (ti) and Uc
a(ti), and U [0, 100] for Uc

d(ti)
and Uu

a (ti) Table 6 summarizes our results. A column represents
a number of schedules, and a row represents a pair of schedule
size and number of resource types. For example, looking at row 2
and column 2, we see that among 10000 games with 5 schedules of
size 2 and 1 resource type, there are 316 cases where the defender’s
SSE strategy is not an NE strategy. The number of cases where the
defender’s SSE strategy is not an NE strategy is never more than
10.5% in any of the 36 settings we tested. This number decreases as
we increase the number of schedules. With 20 available schedules,
the number is less than 2%. The main implication of these results
is that in practice, committing to an SSE strategy is likely to be
a good approach in almost all cases. This is particularly true in
domains like FAMS where schedule sizes are relatively small (2 in
most cases) and the number of possible schedules is large relative
to the number of targets.

5 10 15 20

2S / 1R 316 103 27 3

2S / 2R 313 82 22 2

2S / 3R 297 101 18 3

3S / 1R 933 555 165 32

3S / 2R 858 494 172 35

3S / 3R 867 551 155 35

4S / 1R 990 912 515 183

4S / 2R 1029 950 492 190

4S / 3R 1005 927 483 173

Table 6: Number of instances out of 10000 single-attacker se-
curity games where SSE is not NE

Table 7 shows the results for varying numbers of attacker re-
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sources. Again, each set has 10000 games. As the number of
attacker resources increases, the number of cases where the de-
fender’s SSE strategy is not an NE strategy increases. With 2, 3,
and 4 attacker resources, the numbers are 27%, 54%, and 69% re-
spectively, which implies the defender cannot simply play an SSE
strategy when there are multiple attacker resources. This result
poses an interesting direction for future work, since it is unclear
how a defender should play in these games if the attacker’s ability
to observe the mixed strategy is uncertain.

2 3 4

#SSE�=NE 2692 5368 6873

Table 7: Number of instances out of 10000 multiple-attacker
security games where SSE is not NE

7. SUMMARY AND RELATED WORK
There has been significant interest in understanding the interac-

tion of observability and commitment in general Stackelberg games.
Bagwell’s early work [1] questions the value of commitment to
pure strategies given noisy observations by followers; but the en-
suing and on-going debate illustrated that the leader retains her ad-
vantage in case of commitment to mixed strategies [14, 6]. The
value of commitment for the leader when observations are costly is
also studied in [9]. In contrast with this research, our work focuses
on real-world security games, illustrating subset, equivalence, in-
terchangeability, and uniqueness properties that are non-existent in
general Stackelberg games studied previously.

Pita et al. [11] provide experimental results on observability in
Stackelberg games: they test a variety of defender strategies against
human players (attackers) who choose their optimal attack when
provided with limited observations of defender strategy. Results
show the superiority of a defender’s strategy computed assuming
human “anchoring bias” in attributing probability distribution over
the defender’s actions. This research complements ours, which pro-
vides new mathematical foundations. Testing the insights of our re-
search with the experimental paradigm of [11], with expert players
is an interesting topic for future research.

Going back to the foundations of game theory, Von Neumman
and Morgenstern [15] provided a key result on interchangeability:
for two-player zero-sum games, any combination of players’ max-
imin strategies is in equilibrium. However, our security games are
neither zero-sum nor strategically zero-sum (as seen earlier).

To summarize, this paper is focused on a general class of defender-
attacker Stackelberg games that are directly inspired by real-world
security applications. The paper confronts fundamental questions
of how a defender should compute her mixed strategy. In this
context, this paper provides four key contributions. First, exploit-
ing the structure of these security games, the paper shows that the
Nash equilibria in security games are interchangeable, thus alleviat-
ing the defender’s equilibrium selection problem for simultaneous-
move games. Second, resolving the defender’s dilemma, it shows
that under the SSAS restriction on security games, any Stackelberg
strategy is also a Nash equilibrium strategy; and furthermore, this
strategy is unique in a class of real-world security games of which
ARMOR is a key exemplar. Third, when faced with a follower
that can attack multiple targets, many of these properties no longer
hold, providing a key direction for future research. Fourth, our ex-
perimental results emphasize positive properties of security games
that do not fit the SSAS property. In practical terms, these contri-
butions imply that defenders in applications such as ARMOR [12]

and IRIS [13] can simply commit to SSE strategies, thus helping to
resolve a major dilemma in real-world security applications.
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